

Assessment of Fault Severity towards Prediction of the Remaining Useful Life

R. Klein

PHM Lab, Dept. of Mech. Eng. Ben-Gurion Univ. of the Negev, Israel

R.K. Diagnostics, Israel

PHM23 Salt Lake City, Utah October 28 - November 2, 2023

BGU PHM Lab

- Creating an Israeli excellence center for advanced health monitoring of machinery. \checkmark
- **Cooperation** with partners from the academia, industry, development centers, and defense \checkmark forces.

Agenda

- Types of models
- Hybrid systems
 - Example of fusion of physical knowledge with deep learning
 - Example of domain adaptation for zero shot learning from simulation to real data
- Advanced PHM Research for Engine Mechanical Components (collaboration with AFRL)
 - Research methodology
 - Physical models contribution to severity estimation based on ODM and vibrations
- Endurance Tests of Roller Bearings (collaboration with SKF)
 - New Cls for severity estimation

October 2023

Interpretable· Limited by assumptionPhysical· Dynamic· Interpretable· Limited by assumptionOperation· Kinematic – Signal· Simulate operation· Domain expertise· Simulate operation· Simulate operation· Complex· Operation· Statistical· Large feature space· Black box· Machine· ML – Un/Supervised· Automatic feature· Black box· Deep Learning· Physics based· Learn parameters to fit data· Use insights from data analysis to develop models	Sensor location Operation conditions		MODELS		Sile of the series
 Statistical Machine health status Hybrid Statistical ML – Un/Supervised Deep Learning Hybrid Statistical ML – Un/Supervised Deep Learning Large feature space No need for expert Automatic feature extraction/ selection Large feature space No need for expert Automatic feature extraction/ selection Black box Complete, labeled and immense set of examples Learn parameters to fit data Use insights from data analysis to develop models 		Physical	 Dynamic Kinematic – Signal Finite Elements 	 Interpretable Generalization Simulate operation conditions & sensors 	 Limited by assumptions Domain expertise Complex
 Physics based preprocessing Hybrid Physics based preprocessing Use insights from data analysis to develop models 		Data driven	 Statistical ML – Un/Supervised Deep Learning 	 Large feature space No need for expert Automatic feature extraction/ selection 	 Black box Complete, labeled and immense set of examples
 Cl extraction Hls or classification Fuse estimates from two different approaches 		Hybrid	 Physics based preprocessing CI extraction HIs or classification 	 Learn parameters to fit data Use insights from data analysis to develop models Use physical knowledge to guide the learning process Fuse estimates from two different approaches 	

5

EXAMPLE USING PHYSICAL KNOWLEDGE TO GUIDE THE

[°] LEARNING PROCESS

Deep Learning Models

October 2023

HYBRID MODEL FOR BEARINGS

Shirtic

October 2023

Distribution A: Approved for public release; distribution is unlimited; Case Number AFRL-2023-6128

Fault severity & RUL prediction

Hybrid System Conclusions

- The deep learning algorithms cannot separate between different sources of vibration excitation (gears, unbalance shafts, temperature, contaminated grease or oil, etc.)
- The application of signal processing for separation of excitations is crucial
- An additional process of separation can be done in the feature extraction stage. The most effective separation is based on physical reasoning.

DATA AUGMENTATION AND DOMAIN ADAPTATION

October 2023

GEAR DYNAMIC MODEL

- Spall like faults
- Cracks
- Missing tooth
- Chipped tooth
- Backlash
- Unbalance, Misalignment & Eccentricity
- Surface roughness

ZERO-SHOT LEARNING FROM SIMULATION TO REAL DATA

Predicting classes in the test set for which **no** examples exist in the training set

- The dynamic model can generate a large amount of healthy and faulty data with different severities
- Only healthy measurements are available on the real system

DOMAIN ADAPTATION

Transfer learning

- The transfer function $H(\omega)$ is estimated based only on measured healthy signals
- Passing simulated signal through estimated transfer function generates faulty examples of measured signals → used for training

- Adapting knowledge/ data from one source to another
 - Improving generalization
 - Effective when target domain data is unavailable, but source domain data is available

October 2023

Distribution A: Approved for public release; distribution is unlimited; Case Number AFRL-2023-6128 Fault severity & RUL prediction

Estimating tooth breakage fault severity as a combined anomaly detection + binary classification problem

October 2023

Zero Shot Learning and Data Augmentation

- The feasibility of zero shot learning with data augmented based on simulation was proven
- It was demonstrated how a rich data set of healthy cases containing a large feature space can be used with anomaly detectors
- The threshold for the fault severity classifier is determined based on physical understanding
- Feature engineering can be enhanced by relying on physical methods (e.g. transfer function)

HYBRID ARCHITECTURE

October 2023

PHYSICAL MODELS & SEVERITY ESTIMATION

Bearings

Theoretical Background

ADVANCED PHM RESEARCH FOR ENGINE MECHANICAL COMPONENTS

Endurance Tests of Angular Contact Bearings

October 2023

Distribution A: Approved for public release; distribution is unlimited; Case Number AFRL-2023-6128

Fault severity & RUL prediction 21

Insights from the Metallurgical Analysis

- Spall depth depends on the load and can be calculated by Hertz contact theory
- Spall growth stages:
 - Growth to race width
 - Growth both upstream and downstream, mainly in rolling direction (upstream)

° OIL DEBRIS MONITORING (ODM)

- Integrated AFRL ODM Sensor measures the amount and size of particles in the oil line
- Provides
 - Count of particles in 13 pre-defined size bins
 - Estimated total mass loss

PARTICLE MASS LOSS

did Stice

- Initiation time difference
- "Knee" Point
- Transition to Accelerated Propagation stage
- Relatively similar in the propagation stage

- Small \rightarrow Large spall size
- Flat cylinder with growing diameter \rightarrow flat cylinder + rectangular cuboid

• DYNAMIC MODEL

October 2023

BEARING DYNAMIC MODEL

- Validated and published
- Simulate the vibration signatures of the bearing with spalls of various sizes and locations
- Allows the interpretation of the bearing dynamic behavior and the effects on the vibration signatures

onostic

October 2023

BEARING DYNAMIC MODEL - INSIGHTS

a shi tinostic,

BEARING DYNAMIC MODEL - INSIGHTS

• Classification of different spall severity stages and identification of critical spall

onostic

BEARING DYNAMIC MODEL - INSIGHTS

 Classification of different spall severity stages and identification of critical spall size

onostic

° VIBRATION ANALYSIS

October 2023

Signal Processing

- Complete automatic algorithm
- Common processing for bearing signals
- Synchronization based on ODM recordings and automatic timestamping
- Advanced analysis for feature extraction

onostic

Bearing Tone Locator (BTL)

• BTL algorithm extracts the bearing tone location throughout the experiment

October 2023

Distribution A: Approved for public release; distribution is unlimited; Case Number AFRL-2023-6128

onostic.

CONDITION\SEVERITY INDICATORS

Three indicators were found to indicate the spall size of the knee

- ODM 0
- Energy 0
- **Bearing tone** 0

Entrance to

spall

5.36

5.38

5.34

4000

z

Interactions

with spall

bottom

5.4

CONDITION\SEVERITY INDICATORS

- Bearing Tone shift is a novel phenomenon
- Doesn't depend on the transfer function
- Correlates with the dynamic model
- Provides a constant linear trend for prognostics

onostic

Angular Contact Bearings – Summary

- The metallurgical analysis explained the spall's geometry at different propagation stages, enabling the ODM based severity estimation.
- Definition of the critical spall size at the knee (arc length between two adjacent balls) is based on the insights from the dynamic model.
- New condition indicators, independent of the transmission path, were developed: bearing tone (BPFI) and mass loss
 - Prognostic capability was demonstrated based ODM data
- Energy variation caused by the ball interacting with the outer race was demonstrated in simulations of the dynamic model and it is under investigation

^e ENDURANCE TESTS OF ROLLER BEARINGS

Severity estimation based on vibrations

Experiment setup

- Outer race spall growth on roller bearings endurance test. (70-300 MRev)
 - One experiment contains visual inspections (every 3 MRev)
- Measured Data: speed, load, acceleration
- The protocol consists of two stages.
 - The spall growth sections have high load and high rotating speed
 - The sections for data collection have different speeds (300-3000 RPM)

Distribution A: Approved for public release; distribution is unlimited; Case Number AFRL-2023-6128 Fault severity & R

Data Labeling

- The load signals collected at the minimum rotation speed and high load were analyzed and validated by the visual inspections (every 3 MRev) measurements
 - Recordings presenting a significant level only

Amplitude

SIGNAL PROCESSING & FEATURE EXTRACTION

tid Stif

gio stics

THEORETICAL BACKGROUND

Roller bearings exhibit dual impulse behavior when encountering a spall

D – arclength between 2 RE d_i – ith maxima/minima time stamp h – harmonic #

TREND OF ENERGIES OF BEARING TONES HARMONICS

Onostic.

RESULTS

New CIs, d_i , based on the trend analysis of the energies of the harmonics of the bearing tones represent the fault size/ severity

October 2023

Endurance Tests of Roller Bearings Summary

- Labeled database of endurance tests of roller bearings based on load algorithm was generated
- The new Cls, Maxima and Minima of harmonic trend indicate the spall size
 - Capable to track the severity
 - Independent of transmission path (machinery, operating conditions)

October 2023